Roll No.

	1						

Total No. of Questions: 07

> B.Sc.(IT) (Sem.-2)
> MATHEMATICS-II (DISCRETE)
> Subject Code : BS-104
> Paper ID: [B0406]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

1. Write short notes on :
(a) Find all partitions of the $\operatorname{Set} \mathrm{A}=\{1,2,3\}$.
(b) Let $\mathrm{P}(n)$ be a statement. " $4^{n}>n$ ", if $\mathrm{P}(n)$ is true, prove that $\mathrm{P}(n+1)$ is also true.
(c) Find characteristic equation of

$$
\mathrm{S}(n)-5 \mathrm{~S}(n-1)+6 \mathrm{~S}(n-2)=0
$$

(d) In how many ways can 6 beads of different colours form a necklace ?
(e) Define one-one and onto function.
(f) Write truth table for $(\sim p) \wedge(\sim q)$.
(g) Define Boolean Algebra.
(h) Prove by using Boolean algebra B that $a+\bar{a} \cdot c=a+c$.
(i) In how many ways can a committee of 5 members be formed from 3 men and 3 women.
(j) In how many ways can a cricket eleven by selected from 16 players when one particular player is always selected ?

SECTION-B

2. (a) Find all the partitions of set $\mathrm{A}=\{a, b, c, d\}$.
(b) If R is the relation in $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) \mathrm{R}(c, d)$ iff $a+d=b+c$, show that R is an equivalence relation.
3. (a) Is $f(x)=\frac{x-1}{x+1}$ invertible in its domain? If so, find f^{1}.
(b) Let $f: \mathrm{R} \rightarrow \mathrm{R}, g: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=2 x+1, g(x)=\frac{x}{3}$, verify that $(g o f)^{-1}=f^{-1} o g^{-1}$.
4. Show by method of induction that
(a) $2 \cdot 7^{n}+3 \cdot 5^{n}-5$ is divisible by $24, n \in \mathrm{~N}$.
(b) Find the number of ways in which 5 boys and 5 girls can be seated in a row so that
(i) No two girls sit together.
(ii) All girls sit together and all boys sit together.
5. (a) A box contains 5 different red and 6 different blue balls. In how many ways can 6 balls be selected so that there are atleast two balls of each colour.
(b) How many words can be formed by taking 4 letters at a time out of the letters of the word 'MATHEMATICS'.
6. Solve $\mathrm{S}_{n}-7 \mathrm{~S}_{n-1}+10 \mathrm{~S}_{n-2}=6+8 n$ with $\mathrm{S}_{0}=1, \mathrm{~S}_{1}=2$.
7. (a) Write down :
(i) Contrapositive of $p \rightarrow \sim q$
(ii) Contra positive of converse of $p \rightarrow \sim q$
(iii) Inverse of cenverse of $p \rightarrow q$.
(b) For any a, b in a Boolean Algebra, prove that $(a . b)^{\prime}=a^{\prime}+b^{\prime}$.
